

Fire Suppression On Turbines

Fire Suppression On Turbines

American Fire Technologies

Alarm and Detection/Suppression

American Fire Technologies

 To provide special hazard services world wide to the industrial market through the integration of components and services

Turbine Fire Suppression

- What are our goals today?
 - Types of Suppression systems.
 - How does an system extinguish a fire?
 - Comparison of system types.
 - Design Considerations of a Suppression System.
 - System Components.
 - Sequence of Operation.

Turbine Fire Suppression

A System design is based on reasonably anticipated events to control the fire until an informed party can determine the next course of action.

Turbine Fire Suppression

- Main Types of Suppression Systems today?
 - Clean Agent systems
 - CO2 Systems
 - Mist Systems
 - Dry Chemical
 - Foam System

- Most Clean agent's work by chemically extinguishing a fire at the molecular level.
 - The agent decomposes to extinguish a fire.
 - When a Clean Agent decomposes, toxic gases are released. (Does not apply to inert gasses: Inergen)
 - To avoid high levels of decomposed gasses, Clean agent systems are designed for quick discharges (UL requires <10 seconds).

- CO2 System work by removing/reducing the Oxygen level in the hazard.
 - In order to extinguish a fire, the oxygen level is displaced in the enclosure where it wont support a fire.
 - CO2 system are design to total flooding with an extended discharge.
 - Most common suppression agent used.

- Mist system remove the heating capacity.
 - In order to extinguish a fire, the mist is entrained into the fire and cools the heat.
 - Mist system have an "un-extinguishable" fire.
 - Vortex uses additional nitrogen/inerting to over come the fire as well by reducing the O2 levels.
 - Mist system are design for Total flooding and extended discharge.
 - So Far limited use in Turbines.

- Dry Chemical smothers the fire and chemically breaks the chain.
 - Pre-engineer systems with set volume pressurized cylinders.
 - Has been used on bearing tunnels.
 - One shoot only.
 - Limited use in Turbines.

- Foam System Smoothers the fire by creating a blanket between the fuel and the oxygen source.
 - System have low and high expansion foam.
 - Usually tied to a sprinkler system.
 - High volume of water.
 - Very limited use in Turbines.

	<u>Halon</u>	HFC's	Inert Gas	CO2	Mist	Dry Chem	<u>Foam</u>
Oxygen Depletion			P*	Р		S	S
Heat Absorption	S	Р			P		
Reaction Interruption		Р	S			Р	S

P- Primary S-Secondary

* Depletes O2 to where it wont support fire but will support life.

How Does a Clean Agent System Work? (cont)

- Physical
 - Heat absorption remove heat faster than generated.
 - Reduces flame temperature below that necessary to maintain combustion.
 - Remove oxygen below level to support combustion.
- Chemical
 - Interruption of chemical chain reactions of combustion process by halogenated atoms (FI, CI, Br).

- CO2 (Carbon Dioxide)
 - Not classified as a Clean Agent.
 - Can be lethal to humans.
 - Required at 34% for surface fires.
 - Operates by removing the oxygen from the air.
 - Good for non-occupied hazards.
 - Additional safety equipment and operation issues. – Pneumatic Delays and sirens.

- CO2 (Carbon Dioxide)
 - Designed for 20 Min hold times.
 - Higher Front in cost Lower recharge cost.
 - Possible pressure and Venting issues.
 - LPCO2 refill tank.
 - HPCO2 refill bottles.
 - Extracted as a by product No added environmental impact.

- CO2 (Carbon Dioxide) allowed with
 - Operation Client access procedures cost.
 - Limited access and safety procedures.
 - Lock out valves and solenoid disconnects.
 - Pneumatic delays.
 - Safety equipment odorizers and alarms.
 - Warning Signs.
 - Flow performance analysis.

- CO2 (Carbon Dioxide) allowed with Exceptions apply
 - Time delays may damage equipment.
 - Provision made for lock out during entry.

Different Types of Clean Agents Suppression Systems

- FM-200 (HFC-227ea) CF3CHFCF3
 - Most common agent used.
 - Works by chemically inhibiting fire propagation.
 - Poor flow characteristics.
 - Supports 12 nozzles max.
 - Lower up front cost Higher Recharge cost.
 - Hold time of 10 minutes May be an issues with FM.

Different Types of Clean Agents Suppression Systems

- FM-200 (HFC-227ea) **CF3CHFCF3**
 - Works like a cup of water.

Different Types of Clean Agents Suppression Systems

- FM-200 Implications of hold time
 - Fan test for certification no dump test usually performed.
 - Height of hazard changes over time.
 - Type of hazard changes over time.
 - Location of leaks matter.
 - Changes to the enclosures impact certification.

- Novec 1230 (Sapphire) cf3cf2c(₀)cf(cf3)2
 - Fairly new agent.
 - Works the same as FM-200.
 - Short after life in the atmosphere (days).
 - Poor flow characteristics.
 - Pressurized with Nitrogen.
 - Not typically used on turbines.

- Ecaro 25 (Dupont FE-25) CHF2CF3
 - Closest to replacing Halon 1301.
 - Works by removing O2 at the molecular level.
 - Superior flow characteristics.
 - Required 25% less agent than FM-200.
 - Most economical of Clean Agents.
 - No pressurization concerns.
 - No venting required.
 - Support 30 to 40 Nozzles.

- Inergen (Argonite. Same as Inergen without any CO2)
 - Inert gas (52% nitrogen, 40% argon, and 8% carbon dioxide).
 - Lowers the oxygen in the room to a level that won't support a fire, but still enough oxygen to breath.
 - Design is critical.
 - Must vent room due to pressure build up.
 - Doesn't leak from the room because of low density.
 - Economical to recharge (Hard to find recharge locations).

Physical Properties

<u>Property</u>	<u>Halon 1301</u>	FE-25™	HFC-227ea	<u>Novec</u>	<u>Inergin</u>
Chemical Formula	CF3Br	CHF2CF3	CF3CHFCF3		
Molecular Weight	148.9	120.02	170.0	316.4	34
Boiling Point	-72° F	-55° F	3º F	120° F	
Vapor Pressure	200 psi	195 psi	66 psi	5.87 psi	2175
ODP	12	0	0	0	0
GWP	6900	2800	2900	1	0

- Zero Ozone Depletion Potential (ODP)
- Very low Global Warming Potential (GWP)
- GWP is calculated of a 100 year time horizon and represents mass of CO2 equivalent to emission of one unit
 of this compound

How Does a Suppression Agent System Work? (cont)

Agent Storage

- Agent is a liquid, stored in cylinders or tanks pressurized as needed.
- Agent is super pressurized with N2 to a pressure of 360 psi.
- Agent is distributed to discharge nozzles, drilled to allow a specific flow rate.
- Discharge nozzles are located in the room area and below under floors.
- Cylinders are furnished with low-pressure switches to monitor agent pressure.

- Water Mist
 - Non-Chemical.
 - Micron size water droplets.
 - Best used for generator rooms or areas with high leakage.
 - Very economical to recharge.
 - Has not gained a lot of acceptance in US, widely used in Europe.

- Dry Chem
 - Powered Chemical.
 - Used on Bearings tunnels.
 - One shot only.
 - Requires clean up.
 - Very economical to refill.

- Foam System
 - Non-Chemical.
 - Requires water supply.
 - Water damage to Turbines?
 - Very limited application in turbines.

System Design

- Define Hazard
 - Determine volume of area(s) (L x W x H).
 - Areas may include room, under-floor, and above ceiling.

Agent/Quantity

- Determine which agent to use.
 - Try to use the same agent/mfg that is currently used in the facility.
 - Determine quantity of agent to use.

Design Concentrations Comparison

ECARO-25	8.0%	685 lb.	1
Halon 1301	6.0%	623 lb.	1
HFC-227ea	6.25%	765 lb.	1
Inergen	37%	357 m ³	21
Novec	4%	948 lb.	2

Systems Design

- Automatic and Manual Operation
 - Smoke Detectors are used for automatic operation.
 - Manual release stations are used for manual operation.
- System Alarms
 - Alarm bells
 - Horn strobes
 - Strobes

Systems Design

- Releasing Panels
 - System controls
 - Main Control Panel (UL9th Must be listed to release specific)
 - Operates on 24 volts DC from a 120-volt AC input power source.
 - Contains batteries for DC back up.
 - Monitors and controls all input and output circuits.
 - Includes replays for connections to building alarm panels and remote monitoring.

System Components

- Main Control Panel
 - Is "Conventional" or "Intelligent".
 - Used to monitor and control input and output devices.
 - Supplies power to the field devices.
 - Supervises field wiring
 - INPUTS Opens, Grounds
 - OUTPUTS Opens, Grounds, shorts
 - Displays alarms and troubles.
 - Contains timers for time delays for agent release.

System Components (cont)

- Ionization Smoke Detector
 - Detects 1-2 micron particle size.
 - Should be used in room areas only (airflow issues)

- Photoelectric Smoke Detector
 - Detects visible particles (4+ microns) (Visible)
 - Good for under floor areas.
 - Normally not as sensitive as an ionization detector.

- Heat (Thermal Detector)
 - Operates when temperature reaches set point.
 - Not good for early warning detection
 - Best suited for harsh areas (Smokey/Dirty).

- Air Sampling System
 - Detects "Sub-micron" size particles.
 - Good for ultra early warning of a fire condition.
 - Detects "Thermal degradation" of the item.
 - Allows you to be "Pro-Active" to alarms. You can find the source of the problem before needing the suppression system.
 - Fairly expensive, but could save the cost of a systems recharge.

- Manual Release Station
 - Used to manually discharge the system.
 - Instant release, bypassing any time delays.
 - Normally located near exit doors.
 - Code requires every system to have a manual release.

- Abort Station
 - Used with Clean agent systems.
 - Used to bypass a pending discharge.
 - Located next to the manual release station.
 - Must be depressed (operated) in order to bypass a discharge.
 - Must be operated prior to a system release.

- Agent Storage Cylinders
 - Used to store Agent.
 - Is supplied with pressure gauges and lowpressure switches.
 - Are supplied with valves or bursting disc.
 - Solenoids used to actuate valves.
 - Actuators used for bursting disc type.

Actuators

- Impulse valve
 - Activated by applying voltage to a releasing module.
- Solenoid
 - Activated by applying voltage to coil.
 - Used on cylinders with valves.
 - Can also be used on N2 (Nitrogen Actuators)

- Special Detection Systems
 - Early Warning Fire Alarms (VESDA/SAFE)
 - Used for very early warning of a fire.
 - Monitors particle size of .01 micron (Invisible).
 - Works by taking air samples in the room and counting the particulate.
 - Allow personnel to be pro-active in finding a potential fire hazard and eliminating the need to use the suppression system.

Sequence of Operation

- Single Smoke Detector In Alarm
 - Control Panel Indicates "Alarm" Condition.
 - Control Panel Alarm Contacts Operate.
 - Control Panel Displays Device and Location of Alarm.
 - L.E.D. On Smoke Detector Illuminates Steady "On".
 - Alarm Horn in Hazard Area Starts a Slow Pulse Signal.
 - Alarm Strobe in Hazard Area is Activated.

- Two Smoke Detectors in Alarm (Same Hazard Area)
 - Control Panel Displays Device and Location of Alarm.
 - L.E.D. on Smoke Detector Illuminates Steady "On".
 - Alarm Horn in Hazard Area Changes to a Fast Pulse Signal.
 - Control Panel Pre-Discharge Delay Timer is Activated.
 - Equipment Shutdown Contacts Are Activated.

Note:

- At the end of 30 seconds, the system is discharged into the hazard area.
- If the abort station is operated prior to the 30time delay, the system will not discharge. The abort is a "Dead Man" type, and must be continually depressed in order to bypass a discharge. Releasing the abort station will cause the time delay to restart.

- System Discharge
 - Control Panel Displays System Has Released.
 - Discharge Strobe Outside Exit Door is Activated.
 - Alarm Horn in Hazard Area Changes to a Steady Tone.
 - Discharge Strobe Outside of Exit Door is Activated.
 - Shutdown Relays are Energized.

- System Alarms and Troubles
 - Control Panel will Display Either "Alarm" or "Trouble".
 - Control Panel will Display Cause of the Alarm or Trouble.
 - Control Panel Sonalert Will Sound.

FIRE ALARM

- Operation of Any Smoke Detector or Fire Alarm Pull Station
 - Control Panel Indicates "Alarm" Condition.
 - Control Panel Alarm Contacts Operate.
 - Control Panel Displays Device and Location of Alarm.
 - L.E.D. on Smoke Detector Illuminates Steady "On".
 - Alarm Horns in Hazard Area Starts a Pulse Signal.
 - Shutdown Contacts Operate.

Turbine Suppression system

The End

"Thanks" For Taking The Time To See This!!

We Hope This Will Help.

Remember Knowledge and proper planning

Questions

- Leave me your card/email or email me if you would like additional information or detail
- If you have an questions please come by our booth
- paulh@americanfiretech.com