

Alarm and Detection/Suppression

Fire Safety

American Fire Technologies

 To provide special hazard services world wide to the industrial market through the integration of components and services

Clean Agent

- What are our goals today?
 - How does a Clean Agent extinguish a fire
 - Types of Clean Agents systems
 - Halon?
 - Design Considerations of a Clean Agent System
 - System Components
 - Sequence of Operation

How Does a Clean Agent System Work?

- Most clean agent's work by chemically extinguishing a fire at the molecular level.
 - In order to extinguish a fire, the agent decomposes.
 - When a Clean Agent decomposes, toxic gases are released. (Does not apply to inert gasses: CO2, Inergen)
 - To avoid high levels of decomposed gasses, systems are designed for quick discharges (UL requires <10 seconds).

How Does a Clean Agent System Work? (cont)

- Agent Storage
 - Agent is a liquid, stored in cylinders, pressurized with N2.
 - Agent is super pressurized with N2 to a pressure of 360 psi.
 - Agent is distributed to discharge nozzles, drilled to allow a specific flow rate.
 - Discharge nozzles are located in the room area and below under floors.
 - Cylinders are furnished with low-pressure switches to monitor agent pressure.

How Does a Clean Agent System Work? (cont)

Oxygen Depletion
Heat Absorption
Reaction Interruption

Halon HFC's Inert Gas
Primary
Secondary Primary
Secondary Secondary

How Does a Clean Agent System Work? (cont)

- Physical
 - Heat absorption remove heat faster than generated
 - Reduces flame temperature below that necessary to maintain combustion
- Chemical
 - Interruption of chemical chain reactions of combustion process by halogenated atoms (FI, CI, Br)

Physical Properties

Property	<u>Halon 1301</u>	FE-25™	<u>HFC-227ea</u>	<u>Novec</u>	<u>Inergin</u>
Chemical Formula	CF3Br	CHF2CF3	CF3CHFCF3		
Molecular Weight	148.9	120.02	170.0	316.4	34
Boiling Point	-72° F	-55° F	3º F	120° F	
Vapor Pressure	200 psi	195 psi	66 psi	5.87 psi	2175
ODP	12	0	0	0	0
GWP	6900	2800	2900	1	0

- Zero Ozone Depletion Potential (ODP)
- Very low Global Warming Potential (GWP)
- GWP is calculated of a 100 year time horizon and represents mass of CO2 equivalent to emission of one unit of this compound

- FM-200 (HFC-227ea) CF3CHFCF3
 - Most common agent used.
 - Works by chemically inhibiting fire propagation.
 - Poor flow characteristics.
 - Supports 12 nozzles max

- Novec 1230 (Sapphire) cf3cf2c(₀)cf(cf3)2
 - Fairly new agent.
 - Works the same as FM-200.
 - Short after life in the atmosphere (days).
 - Poor flow characteristics.
 - Pressurized with Nitrogen

- Ecaro 25 (Dupont FE-25) CHF2CF3
 - Closest to replacing Halon 1301
 - Works by removing O2 at the molecular level.
 - Superior flow characteristics.
 - Required 25% less agent than FM-200.
 - Most economical of Clean Agents.
 - No pressurization concerns
 - No venting required
 - Support 30 to 40 Nozzles

- Inergen (Argonite. Same as Inergen without any CO2)
 - Inert gas (52% nitrogen, 40% argon, and 8% carbon dioxide)
 - Lowers the oxygen in the room to a level that won't support a fire, but still enough oxygen to breath.
 - Design is critical.
 - Must vent room due to pressure build up.
 - Doesn't leak from the room because of low density.
 - Economical to recharge (Hard to find recharge locations).

- Water Mist (Micro Mist)
 - Non-Chemical.
 - Micron size water droplets.
 - Best used for generator rooms or areas with high leakage.
 - Very economical to recharge.

- CO2 (Carbon Dioxide)
 - Not classified as a Clean Agent.
 - Can be lethal to humans.
 - Operates by removing the oxygen from the air.
 - Good for non-occupied hazards.

United States Position - Halon

- Montreal Protocol ban on Halon production 12/3 /93
- No current restrictions on use of reclaimed or recylination
- No current restrictions on existing installed syst
- Halon market value decreasing

Halon Retrofit Objectives

- Maintain an equivalent level of protection
- Utilize the existing Halon 1301 piping network
- Minimize business interruption
- Environmentally preferred
- Realize the most cost effective solution
- Is Green important?

Halon Replacement

- No reason to remove Halon, but difficult to recharge if dumps
- FM200/Ecaro/Inert Gases/Green Gases
- Ecaro best one for one replacement.

System Design

- Define Hazard
 - Determine volume of area(s) (L X W X H).
 - Areas may include room, under-floor, and above ceiling.

Agent/Quantity

- Determine which agent to use.
 - Try to use the same agent/mfg that is currently used in the facility.
 - Determine quantity of agent to use.

Design Concentrations Comparison

ECARO-25	8.0%	685 lb.	1
Halon 1301	6.0%	623 lb.	1
HFC-227ea	6.25%	765 lb.	1
Inergen	37%	357 m ³	21
Novec	4%	948 lb.	2

Systems Design

- Automatic and Manual Operation
 - Smoke Detectors are used for automatic operation
 - Manual release stations are used for manual operation.
- System Alarms
 - Alarm bells
 - Horn strobes
 - Strobes

Systems Design

- Releasing Panels
 - System controls
 - Main Control Panel (UL9th Must be listed to release specific)
 - Operates on 24 volts DC from a 120-volt AC input power source.
 - Contains batteries for DC back up.
 - Monitors and controls all input and output circuits.
 - Includes replays for connections to building alarm panels and remote monitoring

Systems Design

- Discharge Nozzles
 - Determine quantity and location for nozzles.
 - Limit nozzles to a maximum flow of 20lbs./second.
 - Locate nozzles in each protected area (Room/U/Floor).
 - Try to locate nozzles away from exit doors.

System Components

- Main Control Panel
 - Is "Conventional" or "Intelligent".
 - Used to monitor and control input and output devices.
 - Supplies power to the field devices.
 - Supervises field wiring
 - INPUTS Opens, Grounds
 - OUTPUTS Opens, Grounds, shorts
 - Displays alarms and troubles.
 - Contains timers for time delays for agent release.

- Ionization Smoke Detector
 - Detects 1-2 micron particle size.
 - Should be used in room areas only (airflow issues)

- Photoelectric Smoke Detector
 - Detects visible particles (4+ microns) (Visible)
 - Good for under floor areas.
 - Normally not as sensitive as an ionization detector.

- Heat (Thermal Detector)
 - Operates when temperature reaches set point.
 - Not good for early warning detection
 - Best suited for harsh areas (Smokey/Dirty).

- Air Sampling System
 - Detects "Sub-micron" size particles.
 - Good for ultra early warning of a fire condition.
 - Detects "Thermal degradation" of the item.
 - Allows you to be "Pro-Active" to alarms. You can find the source of the problem before needing the suppression system.
 - Fairly expensive, but could save the cost of a systems recharge.

- Manual Release Station
 - Used to manually discharge the system.
 - Instant release, bypassing any time delays.
 - Normally located near exit doors.
 - Code requires every system to have a manual release.

- Abort Station
 - Used to bypass a pending discharge.
 - Located next to the manual release station.
 - Must be depressed (operated) in order to bypass a discharge.
 - Must be operated prior to a system release.

- Alarm Devices
 - Alarm Bells.
 - Used for "1st" detection zone alarms.
 - Used for Air sampling system alarms.

- Horn Strobes
 - Can be used for "1st"/"2nd"/"Discharge" alarms
 - Normally are pulsed to indicate type of alarm.
 - Slow pulse 1st zone alarm
 - Fast pulse 2nd zone alarm (pre-discharge"
 - Steady Discharge alarm.

- Strobe Lights
 - Normally used to indicate a system discharge.
 - Located outside exit doors.
 - Attached to a horn inside the hazard area, a strobe indicates a general alarm condition.

- Agent Storage Cylinders
 - Used to store Clean Agent.
 - Is supplied with pressure gauges and lowpressure switches.
 - Are supplied with valves or bursting disc.
 - Solenoids used to actuate valves.
 - Actuators used for bursting disc type.

- Discharge nozzles.
 - Used for distribution of agent.
 - Located in protected areas.
 - Sidewall and center room type.
 - Maximum flow rate of 200 lbs (20 lbs. second)

System Components (cont)

Actuators

- GCA (Compressed Gas Actuator).
 - Triggered by small charge.
 - Requires special handling.
 - Used on cylinders with rupture disc.
- Solenoid
 - Activated by applying voltage to coil.
 - Used on cylinders with valves.
 - Can also be used on N2 (Nitrogen Actuators)

System Components (cont)

- Special Detection Systems
 - Early Warning Fire Alarms (VESDA/SAFE)
 - Used for very early warning of a fire.
 - Monitors particle size of .01 micron (Invisible)
 - Works by taking air samples in the room and counting the particulate.
 - Allow personnel to be pro-active in finding a potential fire hazard and eliminating the need to use the suppression system.

EARLY WARNING SMOKE DETECTOR

- Particles of Combustion are Found in Air Samples
 - Control Panel Indicates "Pre/Alarm" Condition
 - Control Bar Graph Indicates Level of Particle Count
 - Control Panel "Alarm Level" Contacts Operate
 - Alarm Bells in Ground Floor Area Are Activated

Detection Devices

- Determine quantity of smoke detectors.
 - Use a spacing of 250 sq. ft. per detector.
 - In room areas use a combination of ionization and photoelectric smoke detectors.
 - In under-floor spaces, only use photoelectric smoke detectors.
 - Located a manual release and abort station at the primary room exits. Normally, these are installed inside the hazard area.
 - Locate audible and visual devices in the room so all personnel can hear/see the alarms.
 - Locate discharge strobes outside of the main exit doors.

Sequence of Operation

- Single Smoke Detector In Alarm
 - Control Panel Indicates "Alarm" Condition
 - Control Panel Alarm Contacts Operate
 - Control Panel Displays Device and Location of Alarm
 - L.E.D. On Smoke Detector Illuminates Steady "On"
 - Alarm Horn in Hazard Area Starts a Slow Pulse Signal
 - Alarm Strobe in Hazard Area is Activated

- Two Smoke Detectors in Alarm (Same Hazard Area)
 - Control Panel Displays Device and Location of Alarm
 - L.E.D. on Smoke Detector Illuminates Steady "On"
 - Alarm Horn in Hazard Area Changes to a Fast Pulse Signal
 - Control Panel Pre-Discharge Delay Timer is Activated
 - Equipment Shutdown Contacts Are Activated

Note:

- At the end of 30 seconds, the system is discharged into the hazard area.
- If the abort station is operated prior to the 30time delay, the system will not discharge. The abort is a "Dead Man" type, and must be continually depressed in order to bypass a discharge. Releasing the abort station will cause the time delay to restart.

- System Discharge
 - Control Panel Displays System Has Released
 - Discharge Strobe Outside Exit Door is Activated
 - Alarm Horn in Hazard Area Changes to a Steady Tone
 - Discharge Strobe Outside of Exit Door is Activated
 - Shutdown Relays are Energized

- System Alarms and Troubles
 - Control Panel will Display Either "Alarm" or "Trouble"
 - Control Panel will Display Cause of the Alarm or Trouble
 - Control Panel Sonalert Will Sound

Note:

- Depressing "Acknowledge" button on front panel can silence the control panel sounder.
- Alarm devices in the field can be silenced by depressing the "Alarm Silence" button on front panel.
- Depressing "Reset" button will return panel to "Normal" condition.

- FIRE ALARM
 - Operation of Any Smoke Detector or Fire Alarm Pull Station
 - Control Panel Indicates "Alarm" Condition
 - Control Panel Alarm Contacts Operate
 - Control Panel Displays Device and Location of Alarm
 - L.E.D. on Smoke Detector Illuminates Steady "On"
 - Alarm Horns in Hazard Area Starts a Pulse Signal
 - Shutdown Contacts Operate

NOTE:

- Depressing "Alarm Silence" button on control panel door will silence alarm bells.
- Depressing "Reset" button will reset panel to normal condition.

Clean Agent

The End

"Thanks" For Taking The Time To See This!!

We Hope This Will Help

Questions

Leave me your card/email or email me if you would like additional information on any of the additional detail

paulh@americanfiretech.com

